Standard Practice for In-Use Resistance Testing of Gloves and Finger Cots
ESD Association Standard Practice for Protection of Electrostatic Discharge Susceptible Items –

In-Use Resistance Testing of Gloves and Finger Cots

Approved September 11, 2005
ESD Association Inc.
ESD Association standards and publications are designed to serve the public interest by eliminating misunderstandings between manufacturers and purchasers, facilitating the interchangeability and improvement of products and assisting the purchaser in selecting and obtaining the proper product for his particular needs. The existence of such standards and publications shall not in any respect preclude any member or non-member of the Association from manufacturing or selling products not conforming to such standards and publications. Nor shall the fact that a standard or publication is published by the Association preclude its voluntary use by non-members of the Association whether the document is to be used either domestically or internationally. Recommended standards and publications are adopted by the ESD Association in accordance with the ANSI Patent policy.

Interpretation of ESD Association Standards: The interpretation of standards in-so-far as it may relate to a specific product or manufacturer is a proper matter for the individual company concerned and cannot be undertaken by any person acting for the ESD Association. The ESD Association Standards Chairman may make comments limited to an explanation or clarification of the technical language or provisions in a standard, but not related to its application to specific products and manufacturers. No other person is authorized to comment on behalf of the ESD Association on any ESD Association Standard.

The contents of ESDA’s standards and publications are provided “as-is”, and ESDA makes no representations or warranties, express or implied, of any kind with respect to such contents. ESDA disclaims all representations and warranties, including without limitation, warranties of merchantability, fitness for particular purpose or use, title and non-infringement.

Disclaimer of Guaranty: ESDA standards and publications are considered technically sound at the time they are approved for publication. They are not a substitute for a product seller’s or user’s own judgment with respect to any particular product discussed, and ESDA does not undertake to guaranty the performance of any individual manufacturers’ products by virtue of such standards or publications. Thus, ESDA expressly disclaims any responsibility for damages arising from the use, application, or reliance by others on the information contained in these standards or publications.

Limitation on ESDA's Liability: Neither ESDA, nor its members, officers, employees or other representatives will be liable for damages arising out of or in connection with the use or misuse of ESDA standards or publications, even if advised of the possibility thereof. This is a comprehensive limitation of liability that applies to all damages of any kind, including without limitation, loss of data, income or profit, loss of or damage to property and claims of third parties.

Published by:

Electrostatic Discharge Association
7900 Turin Road, Bldg. 3
Rome, NY 13440

Copyright © 2005 by ESD Association
All rights reserved

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Printed in the United States of America

ISBN: 1-58537-071-1
Foreword

This standard practice is intended to provide test procedures for measuring the intrinsic electrical resistance of gloves and finger cots; and electrical resistance of gloves or finger cots and personnel together as a system. This standard practice applies to all gloves and finger cots used to control Electrostatic Discharge (ESD). This standard practice provides data that are relevant in the user’s specific environment and application.

The test uses ANSI/ESD STM11.11, Surface Resistance Measurement of Static Dissipative Planar Materials, ANSI/ESD STM 11.12, Volume Resistance Measurement of Static Dissipative Planar Materials, ANSI/ESD STM 11.13, Two-Point Resistance Measurement of Dissipative and Insulative Materials and a Constant Area and Force Electrode (CAFE) specifically designed for resistance measurements at the thumb and finger-tips. A further advantage of the CAFE is that it can be used to test finger cots as well as gloves using an identical procedure.

The user of the CAFE test method should note that the in-use resistance of the glove or finger cot can be much lower than its intrinsic resistance as measured by ANSI/ESD STM11.11, STM11.12, or STM11.13. In addition, once a glove or finger cot is worn it can be measured only once because the glove or finger cot may be contaminated by a person’s skin emissions. This contamination could affect the accuracy and reproducibility of further measurements on a particular glove or finger cot. It is suggested for the best reproducibility for a test group that gloves or finger cots be selected from the same lot. In the case of testing for lot-to-lot product auditing, compliance verification or variation, gloves or finger cots should be selected from multiple lots.

Electrical resistance is one property that can be used to evaluate the electrostatic characteristics of gloves. However, resistance does not fully characterize these materials. An additional property to be considered in the selection and use of gloves and finger cots includes charge accumulation. Suggested test methods for personnel and glove and finger cot charging will be forthcoming.

A common source of electrostatic charge in a work environment is the separation of gloves from the items being picked-up or released, resulting in the generation of electrostatic charge that can accumulate on personnel, gloves or finger cots and induced into items. The effect of this generation and accumulation of electrostatic charge can be minimized with appropriate selection of glove or finger cots. To effectively control electrostatic discharge on personnel and equipment, gloves and finger cots must be used in combination with other grounding devices.

A glove material, which is conductive enough to discharge a person or an object, may also pose a safety hazard. The work performed on an ESD susceptible item often entails the use of tools and test instruments that operate at voltages high enough to cause electrical shock. The presence of a material tested using the methods described in this document will not guarantee personnel safety. This document includes test methods that may be applicable for measurement of gloves and fingers cots that reside in the conductive range, however effects due to skin resistance and electrode resistance may create significant errors. Test voltage may also be an issue for conductive materials.

Beneficial comments (recommendations, additions, deletions and pertinent data, which may be of use in improving future versions of this document, should be addressed to:

ESD Association
Chairperson Subcommittee Workgroup - Gloves
7900 Turin Rd., Bldg. 3
Rome, NY 13440
At the time the work-in-process document was presented to the Standards Committee, working group 15 subcommittee had the following members:

Gene Chase, Chair
Electro-Tech Systems, Inc.

Tom Albano
ITT Space Systems Division

Alan Barber
Dow Reichhold Specialty Latex

Bill Casselman
QRP, Inc.

Steve Gerken
United States Air Force

Arleigh Hartkopf
Ansell Healthcare

Tim Jarrett
Guidant Corporation

Johanna Morris
Components Intel de Costa Rica

Carl Newberg
Rivers Edge Technical Service

Rick Rodrigo
SIMCO

Julius Turangan
Western Digital

Stan Weitz
Electro-Tech Systems, Inc.

The following individuals made significant contribution to the development of SP15.1-2005:

Jacquana T. Diep
Advanced Micro Devices

Mike Manders
United States Air Force

David E. Swenson
Affinity Static Control Consulting, LLC

Julie Vaughn
Noveon, Inc
TABLE OF CONTENTS

1.0 PURPOSE AND SCOPE
1.1 Purpose ... 1
1.2 Scope ... 1

2.0 NORMATIVE REFERENCES ... 1

3.0 DEFINITION OF TERMS
3.1 Constant Area and Force Electrode (CAFE) 1
3.2 In-Use Resistance Test ... 1

4.0 PERSONNEL SAFETY .. 1

5.0 EQUIPMENT ... 2
5.1 A wrist strap with a ground cord containing an integral one megohm resistor ... 2
5.2 A wrist strap with a ground cord that does not contain an integral one megohm resistor 2
5.3 Low Resistance Meter .. 2
5.4 High Resistance Meter ... 2
5.5 Constant Area and Force Electrode (CAFE) 2

6.0 MATERIAL TESTING .. 2
6.1 Sample Size ... 2
6.2 Sample Preparation .. 2
6.3 Surface and Volume Resistance Measurements of Glove Material ... 2
6.4 Two-Point Resistance Measurements of Finger Cot Material ... 2
6.5 Baseline Resistance Measurement of Operator ... 2
6.6 Low Voltage System Resistance Test (less than 1.0 x 10^6 ohms) ... 3
6.7 Low Voltage System Resistance Test (greater than 1.0 x 10^6 ohms) .. 3
6.8 High Voltage System Resistance Test (greater than 1.0 x 10^7 ohms) ... 4

7.0 TEST RESULTS ... 4

8.0 BIBLIOGRAPHY .. 9

FIGURES:
Figure 1. Constant Area and Force Electrode (CAFE) .. 5
Figure 2. Photo of CAFE Test Setup ... 6
Figure 3. Resistance Test Data Sheet .. 7
Figure 4. Constant Area and Force Electrode (CAFE) Test Data Sheet 8
1.0 PURPOSE AND SCOPE

1.1 Purpose
This document provides test procedures for measuring the intrinsic electrical resistance of gloves and finger cots as well as their electrical resistance together with personnel as a system. The system test provides data that are relevant in the user’s specific environment and application.

1.2 Scope
This document applies to all gloves and finger cots used as part of a user defined Electrostatic Discharge (ESD) Control Program Applicability.

This document is intended to provide test procedures for measuring the electrical resistance of gloves or finger cots. Intrinsic resistance measurements include surface, volume, and point-to-point resistance using ANSI/ESD STM11.11, 11.12, and 11.13, respectively. “In-use” resistance measurement of the glove/finger cot and personnel together as a system is defined using a constant area force electrode (CAFE).

The resistance of the glove or finger cot may be much lower during use than its intrinsic resistance due to the interior of the glove/finger cot becoming hydrated once it is placed on the hand/finger of the operator.

2.0 NORMATIVE REFERENCES

ANSI/ESD S1.1, Wrist Straps

ANSI/ESD STM11.11, Surface Resistance Measurement of Static Dissipative Planar Materials

ANSI/ESD STM11.12, Volume Resistance Measurement of Static Dissipative Planar Materials

ANSI/ESD STM11.13, Two-Point Resistance Measurement of Dissipative and Insulative Materials

ESD ADV1.0, Glossary of Terms

3.0 DEFINITION OF TERMS

Terms used in this document are in accordance with the definitions found in ESD ADV1.0 Glossary of Terms.

3.1 Constant Area and Force Electrode (CAFE)
An electrode designed to be held by a person's finger, gloved or ungloved, to reproducibly measure resistance from the finger to a counter electrode such as a ground strap worn on the wrist of the same hand. This electrode is suitable for measuring the resistance of a finger wearing a finger cot. See Figures 1 and 2.

3.2 In-Use (System) Resistance Test
A system resistance test from a Constant Area and Force Electrode, through a glove or finger cot, to a person's finger or thumb, using a wrist strap as the second electrode.
4.0 PERSONNEL SAFETY

The procedures and equipment described in this document may expose personnel to hazardous electrical conditions. Users of this document are responsible for selecting equipment that complies with applicable laws, regulatory codes and both external and internal policy. Users are cautioned that this document cannot replace or supersede any requirements for personnel safety.

Ground fault circuit interrupters (GFCI) and other safety protection should be considered wherever personnel might come into contact with electrical sources.

Electrical hazard reduction practices should be exercised and proper grounding instructions for equipment must be followed.

5.0 EQUIPMENT

5.1 A wrist strap with a ground cord containing an integral one megohm resistor

Since an integral one megohm resistor is included in series with the wrist strap, the actual lower limit for the resistance measurement using this ground cord will be in the single-digit megohm range. The integral one megohm resistor should be verified using the test method described in ANSI/ESD S1.1.

5.2 A wrist strap with a ground cord that does not contain an integral one megohm resistor

5.3 Low Resistance Meter

A DC ohmmeter shall be used for gloves that have intrinsic or in-use resistances less than 1.0×10^6 ohms. The DC ohmmeter shall be capable of measuring a DC resistance of 0.1 ohm through 10 megohms ± 10% with an open circuit voltage greater than 1.5 volts and less than 10 volts.

5.4 High Resistance Meter

5.4.1 The meter shall have an output voltage of 100 volts (± 5%) while under load for measurements of 1.0×10^6 ohms and above, and 10 volts (± 5%) while under load for measurements less than 1.0×10^6 ohms.

5.4.2 The meter must be capable of making measurements from 1.0×10^3 ohms (± 10% accuracy) to 1.0×10^{11} ohms (± 10% accuracy). A power supply and ammeter, or an integrated instrument that combines those functions may be used.

5.5 Constant Area and Force Electrode (CAFE)

The electrode design, materials, and specifications are shown in Figure 1.

6.0 MATERIAL TESTING

6.1 Sample Size

Six specimens of each glove type or finger cot type are required for this test procedure.

6.2 Sample Preparation

6.2.1 Standard test conditions for this testing will be 23 ± 3°C, 12% ± 3% RH and 50%± 5% R.H.

6.2.2 The samples shall be conditioned at the standard conditions for 48 hours minimum.

6.3 Surface and Volume Resistance Measurements of Glove Material
The resistance of glove material shall be conditioned and tested using ANSI/ESD STM11.11, Surface Resistance Measurement, and ANSI/ESD S11.12, Volume Resistance Measurement at the two humidity conditions listed in 6.2.1.

6.4 Two Point Resistance Measurements of Finger Cot Material
The resistance of finger cot material shall be conditioned and tested using Two-Point Resistance STM11.13 at the two humidity conditions listed in 6.2.1.

6.5 Baseline Resistance Measurement of Operator
The baseline resistance measurement is made with an ungloved operator. The reading verifies the functionality of the test system and establishes the minimum resistance of the operator only. All in-use testing should be performed at environmental conditions similar to those in which the gloves will be used.

6.5.1 This measurement shall be performed using the DC ohmmeter as specified in Section 5.3.

6.5.2 Select the test subject's hand of preference that will eventually be used to wear the glove/finger cot. Select the thumb and/or finger(s) to be tested. Attach the wrist cuff to the wrist of that hand. Attach the ground cord without the one megohm resistor to one input of the resistance meter. Ensure that the wrist cuff makes a good connection with the skin. An appropriate lotion may be used to assure a good connection. If a lotion is used, use care not to contaminate the gloves/finger cots during subsequent tests.

6.5.3 Attach the Constant Area and Force Electrode (CAFE) via the banana jack to the other input of the resistance meter. See Figure 2.

6.5.4 Balance the CAFE on the fingerprint side of the thumb or first finger of choice of the hand that has the wrist strap connected to it. See Figure 2.

6.5.5 Record the resistance measurement between the electrode on the bare finger and the wrist strap after 15 seconds electrification time. Repeat the test on any other digit that is selected for testing.

6.5.6 Clean the electrode (CAFE) with isopropyl alcohol prior to performing the following steps.

6.6 Low Voltage System Resistance Test (less than 1.0 x 10^6 ohms)

6.6.1 This resistance shall be measured first using an ohmmeter as specified in Section 5.3.

6.6.2 Attach the wrist cuff to the hand that will wear the glove. Attach the wrist strap cord without the one megohm resistor to one lead of the ohmmeter. Ensure that the wrist cuff makes a good connection with the skin.

6.6.3 Attach the (CAFE) to the other lead of the ohmmeter. See Figure 2.

6.6.4 Wear the glove and wait a minimum of 15 seconds to begin the electrical testing.

6.6.5 Balance the CAFE on the fingerprint side of the thumb or first finger of choice of the hand wearing the glove. See Figure 2.

6.6.6 Record the resistance after 15 seconds electrification time. If the resistance measured is less than 1.0x10^6 ohms, record the resistance measurement between the electrode and the wrist cuff. Repeat the test on any other digit that was selected for testing. If the resistance is greater than 1.0x10^6 ohms, perform the testing as specified in section 6.7.

6.6.7 Repeat the above procedure for all of the test specimens at both humidity conditions.

6.7 Low Voltage System Resistance Test (greater than 1.0 x 10^6 ohms)
6.7.1 Use a meter capable of applying a voltage of 10 volts as specified in Section 5.4.

6.7.2 Attach the wrist cuff to the hand that will wear the glove. Attach the wrist strap cord without the one megohm resistor to one input of the resistance meter. Ensure that the wrist cuff makes a good connection with the skin.

6.7.3 Attach the CAFE to the other input of the resistance meter. See Figure 2.

6.7.4 Wear the glove and wait a minimum of 15 seconds to begin the electrical testing.

6.7.5 Balance the CAFE on the fingerprint side of the thumb or first finger of choice of the hand wearing the glove. See Figure 2.

6.7.6 Apply 10 volts to the electrode. Record the resistance after 15 seconds electrification time. If the resistance measured is less than 1.0×10^7 ohms, then record the resistance reading between the electrode and the wrist cuff. Repeat the test on any other digit that was selected for testing. If the resistance measured is greater than 1.0×10^7 ohms, perform testing as specified in section 6.8.

6.7.7 Repeat the above procedure for all of the test specimens at both humidity conditions.

6.8 High Voltage System, High Resistance Test greater than 1.0×10^7 ohms.

6.8.1 Use a meter capable of applying a voltage of 100 volts as specified in Section 5.4.

6.8.2 Attach the wrist cuff to the hand that will wear the glove. Attach the wrist strap cord with the one megohm resistor to one input of the resistance meter. Ensure that the wrist cuff makes a good connection with the skin.

6.8.3 Attach the CAFE to the other input of the resistance meter. See Figure 2.

6.8.4 Wear the glove and wait a minimum of 15 seconds to begin the electrical testing.

6.8.5 Balance the CAFE on the fingerprint side of the thumb or first finger of choice of the hand wearing the glove. See Figure 2.

6.8.6 Apply 100 volts to the electrode. Record the resistance after 15 seconds of electrification time. Record the resistance measurement between the electrode and the wrist cuff. Repeat the test on any other digit that was selected for testing.

6.8.7 Repeat the above procedure for all of the test specimens at both humidity conditions.

7.0 TEST RESULTS

Report all data on the attached data recording sheets. See sample data sheets, Figures 3 and 4.
Figure 1: Constant Area and Force Electrode (CAFE)
Figure 2: Photo of CAFE Test Setup
Material Measurement Data Sheet

Test Facility: ________________________ Date of Testing: ________________________
Conditioning Temperature: _______ °C Conditioning Humidity: ______%R.H.
Conditioning Time: _______________
Test Temperature: _____________ °C Test Humidity: __________ %R.H.
Operator: _______________________
Glove or Finger Cot Type: ______________________
Test Voltage: _______________

<table>
<thead>
<tr>
<th>Glove or Finger Cot#</th>
<th>STM11.11 Surface Resistance</th>
<th>STM11.12 Volume Resistance</th>
<th>STM11.13 Point-to Point Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std. Dev.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Glove or Finger Cot#</th>
<th>STM11.11 Surface Resistance</th>
<th>STM11.12 Volume Resistance</th>
<th>STM11.13 Point-to Point Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std. Dev.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3: Resistance Test Data Sheet
<table>
<thead>
<tr>
<th>No Glove #</th>
<th>Finger 1</th>
<th>Finger 2</th>
<th>Finger 3</th>
<th>Finger 4</th>
<th>Thumb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Glove Type: ______________________</th>
<th>Test Voltage: ____________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glove #</td>
<td>Finger 1</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Average

Std. Dev.

Minimum

Maximum

Data Summary for All Fingers:

<table>
<thead>
<tr>
<th>Average</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std. Dev.</td>
<td>Maximum</td>
</tr>
</tbody>
</table>

Glove Type: ______________________ | Test Voltage: ____________ |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Glove #</td>
<td>Finger 1</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Average

Std. Dev.

Minimum

Maximum

Data Summary for All Fingers:

<table>
<thead>
<tr>
<th>Average</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std. Dev.</td>
<td>Maximum</td>
</tr>
</tbody>
</table>

Figure 4: Constant Area and Force Electrode (CAFE) Gloves/Finger Cot Test Data Sheet
8.0 BIBLIOGRAPHY

ESD TR 03-99 ESD Glove and Finger Cots

ASTM D257-93, Standard Test Methods for DC Resistance or Conductance of Insulating Materials